VICUG-L Archives

Visually Impaired Computer Users' Group List

VICUG-L@LISTSERV.ICORS.ORG

Options: Use Forum View

Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
Martin Courcelles <[log in to unmask]>
Reply To:
Date:
Tue, 2 Nov 2004 16:00:54 -0500
Content-Type:
text/plain
Parts/Attachments:
text/plain (121 lines)
Three Minutes With Ray Kurzweil
Visionary tells how biotechnology and nanotechnology will extend human life spans into near immortality.

Tom Spring
From the December 2004 issue of PC World magazine
Posted Monday, November 01, 2004

Ray KurzweilTechnology pioneer, entrepreneur, and futurist Ray Kurzweil, 56, invented the flatbed scanner, developed the first text-to-speech reading machine
for the blind, helped develop omnifont optical character recognition, and was the first to market large-vocabulary speech recognition technology, among
many other achievements. He has won numerous prizes and awards, including the Lemelson-MIT Prize, the nation's largest award for invention and innovation,
and the 1999 National Medal of Technology from President Bill Clinton. In his latest book, Fantastic Voyage: Live Long Enough to Live Forever (Rodale Books),
Kurzweil and coauthor Terry Grossman, MD, explain how new technologies will push human life spans into virtual immortality.

PC World: How does computer technology fit into your plan to "live long enough to live forever"?

Ray Kurzweil: [In the recent book,] we present three bridges to radical life extension.

We provide a detailed program--bridge one--based on today's knowledge of how to slow down aging and disease processes. I've been reprogramming the biochemistry
of my own body for 20 years, and this has become more intensive with my collaboration over the past five years with Dr. Grossman. I take about 250 supplements
each day and weekly intravenous therapies. A biological aging test pegged me at about 38 when I was 40. I'm now 56, and an extensive biological aging test
says that my biological age is now 40, so I have not aged very much in the last 16 years.

Dr. Grossman and I describe a program of how to slow down each of the dozen aging and disease processes. This program will enable baby boomers who are aggressive
enough to remain in good shape until the full flowering of the biotechnology evolution--bridge two, in which we reprogram the information processes underlying
biology. Biotech will reach its peak in ten to twenty years.

Computers are playing a vital role in biotechnology. The decoding of the genome would have been impossible without computers, and we're using computers
today to design highly targeted therapies that perform precise biochemical missions, such as destroying a cancer cell, with minimal side effects. We're
starting to place computerized biochemical sensors in our bodies that can monitor our health and make diagnostic decisions. An artificial pancreas is now
undergoing clinical trials; it combines a glucose sensor, an insulin pump, and a computer, all embedded inside the patient's body.

Biotechnology in turn will lead to bridge three--nanotechnology--in which we will go beyond the limitations of biology to enhance our physical and mental
capabilities by factors of many thousands, eventually millions. The golden age of nanotechnology will be in the 2020s. We will ultimately replace our frail
"version 1.0" bodies with a greatly enhanced version 2.0. In our book, we describe all three bridges in detail.

The killer app for nanotechnology, about twenty years away, is nanobots. Inside our bodies and brains, nanobots will provide radical life extension by destroying
pathogens and cancer cells, repairing DNA errors, destroying toxins and debris, and otherwise reversing aging processes. Nanobots are computer-based robots
small enough to travel in our bloodstream.

PCW: Is technological advancement a double-edged sword?

Kurzweil: You don't have to look further than the 20th century to see the deeply intertwined promise and peril of technology. We had over 100 million people
die in 20th-century wars made possible by technology. On the other hand, how many would really want to go back one or two centuries to the labor-filled,
disease- and disaster-prone lives that people lived? Human life expectancy was 37 years in 1800.

The 21st-century technologies have the potential to overcome problems that humanity has struggled with for eons. As mentioned, biotechnology and nanotechnology
have the potential to overcome disease and to vastly extend human health and longevity. Nanotechnology can also produce radical wealth creation in that
we will be able to manufacture essentially any physical product from inexpensive raw materials costing pennies per pound. There are many other profound
benefits to come.

But these technologies are also introducing new perils. The capability exists right now in a routine college biotechnology laboratory to create a bioengineered
virus that could spread easily and stealthily--that is, have a long incubation period so it spreads far and wide before being detected--and could be deadly.
Self-replicating nanobots would essentially be a nonbiological cancer that could threaten the biomass. As for strong AI, artificial intelligence at human
levels and beyond, this could be the most daunting challenge of all if it does not remain "friendly." [For more on Kurzweil and AI, see
KurzweilAI.net.]

But relinquishing these future technologies is not the answer. That would eliminate the benefits while actually making the dangers worse by driving development
underground, where responsible practitioners would not have ready access to the tools needed to develop the defensive technologies. Broad relinquishment
would also be impossible except in a worldwide totalitarian system.

We've actually done well with the test case of software viruses. Although they remain a problem, and always will be a problem, the technological "immune
system" that has developed in response has managed to keep pace. If we do as well with biological viruses, self-replicating nanotechnology, and other future
dangers, we will be able to keep a step or two ahead of the perils.

PCW: What else can nanobots do?

Kurzweil: Nanobots in the capillaries of our brains will interact with our biological neurons to vastly expand our biological intelligence. Once nonbiological
intelligence gets a foothold in our brains (a threshold that we have already passed since we do have a growing arsenal of neural implants), it will grow
in capacity by at least doubling every year. In comparison, our biological intelligence is essentially fixed in capacity. The crossover point will be in
the 2020s. By the 2030s, the nonbiological portion of our intelligence will predominate.

Nanobots in the environment will be able to reverse the environmental degradation from the first industrial revolution--for example, removing controlled
amounts of carbon dioxide from the air, which will have the side benefit of providing carbon and oxygen, both useful ingredients for nanotechnology. Renewable
energy will be revolutionized by nanotechnology, for example, efficient nano solar cells and nanoscale fuel cells for highly distributed, decentralized
energy resources.

PCW: When will nanotechnology have meaningful impact on health care and/or the quality of life for average people?

Kurzweil: We'll start to see benefits over the next few years with nano-engineered sensors in the body. The golden age of nanotechnology will be the 2020s.

PCW: What from your work with voice recognition technology has helped you with your work today in understanding living longer?

Kurzweil: There is a connection between my work on longevity and my role as an inventor overall. In order to time my inventions, I became interested in
technology trends, and that has taken on a life of its own. Today I work with a group of researchers to gather data on technology trends in many areas,
and develop mathematical models of how technology evolves. I have a successful track record of predictions based on these models that goes back twenty
years. Based on these models, we can anticipate the emerging role of biotechnology and nanotechnology on our health. That is how Dr. Grossman and I developed
our "bridge to a bridge to a bridge" concept for radical life extension.

PCW: How has voice recognition succeeded and failed?

Kurzweil: There are millions of people using large-vocabulary speech recognition to create text, although it is still a small percentage of the hundreds
of millions of computer users. Accuracy continues to improve gradually, and this technology will ultimately be even more widespread. We are beginning to
see ubiquitous use of large-vocabulary, speaker-independent speech recognition over the telephone. You can speak to British Airways' virtual travel agent
about anything you want, so long as it has to do with making reservations on British Airways. Many companies are doing this, and this will be very widespread
over the next several years.

PCW: How is technology empowering the disabled today?

Kurzweil: Reading machines for the blind, an area that I've been involved in, are helping most school-age and working blind persons to access ordinary printed
material. Systems that combine reading ability with highlighting of the text being spoken on images of the material are helping about 100,000 dyslexic
students today. These are both technologies from Kurzweil Educational Systems. Prosthetic systems for people missing limbs are using advanced technologies,
including computer control. Ultimately we will be able to pick up the brain patterns of a physically disabled person, translate those signals, and transmit
them wirelessly to that person's limbs to restore their ability to move and walk. Speech recognition will be used to provide subtitles on the world for
the deaf.

PCW: Your idea that nanotechnology-based self-replication will be a reality in 2020 scares the hell out of me. Should I be worried?

Kurzweil: As I mentioned, it's a real concern. However, consider the following perspective. When the first software virus emerged, observers said that they
would eventually become much more sophisticated and destroy the Internet. The first part of that prediction turned out to be true, but not the second part.
That's because the defensive technologies evolved along with the offensive ones. That's the same strategy we need to follow with the perils of these 21st-century
technologies, such as nanotechnology.


VICUG-L is the Visually Impaired Computer User Group List.
To join or leave the list, send a message to
[log in to unmask]  In the body of the message, simply type
"subscribe vicug-l" or "unsubscribe vicug-l" without the quotations.
 VICUG-L is archived on the World Wide Web at
http://maelstrom.stjohns.edu/archives/vicug-l.html


ATOM RSS1 RSS2