VICUG-L Archives

Visually Impaired Computer Users' Group List

VICUG-L@LISTSERV.ICORS.ORG

Options: Use Forum View

Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
"Kennedy, Bud" <[log in to unmask]>
Reply To:
Kennedy, Bud
Date:
Mon, 24 Jun 2002 16:39:06 -0400
Content-Type:
text/plain
Parts/Attachments:
text/plain (388 lines)
DISCOVER Vol. 23 No. 6 (June 2002)

Sight Unseen
Mike May was blind most of his life until surgery gave him his sight back.
But two years later he still can't recognize his own wife. By learning why,
psychologists
are revealing the very origins of vision
By Michael Abrams
Photography by Alyson Aliano

Mike May holds the world speed record for downhill skiing by a blind person.
In his competitive days he would slalom down the steepest black-diamond
slopes
at 65 miles an hour, with a guide 10 feet ahead to shout "left" and "right."
The directions were just obvious cues. The rest came from the feel of the
wind racing against his cheeks and the sound of the guide's skis snicking
over the snow. But May's days as a world-class blind athlete are behind him.
He's no longer blind.

May lost his vision at the age of 3, when a jar of fuel for a miner's
lantern exploded in his face. It destroyed his left eye and scarred the
cornea of
his right, but over the next 43 years he never let those disabilities slow
him down. He played flag football in elementary school, soccer in college,
and
nearly any activity that didn't involve projectiles as an adult. He earned a
master's degree in international affairs from Johns Hopkins, took a job with
the CIA, and became the president and CEO of the Sendero Group, a company
that makes talking Global Positioning Systems for the blind. Along the way,
he
found time to help develop the first laser turntable, marry, have two
children, and buy a house in Davis, California. "Someone once asked me if I
could
have vision or fly to the moon, what would I choose," he once wrote. "No
question- I would fly to the moon. Lots of people have sight, few have gone
to
the moon."

Then one November day in 1999, he came back to his senses. At St. Mary's
Hospital in San Francisco, surgeon Daniel Goodman dropped a doughnut of
corneal
stem cells onto May's right eye (his left was too severely damaged to be
repaired). The cells replaced scar tissue and rebuilt the ocular surface,
preparing
the eye for a corneal transplant. On March 7, 2000, when the wraps were
removed, May got his first look at his wife, his children, and for the first
time
since he was a toddler, himself.

Sight restoration is a periodic miracle- both for its recipients and for the
scientists who have the privilege of studying them. As early as the fifth
century
B.C., Egyptian surgeons used a needle to push their patients'
cataract-covered lenses away from their pupils, affording them some degree
of sight. More
recently, in the late 1960s, surgeons learned to remove cataracts with
ultrasound. The stem-cell surgery performed on May was developed in Japan
and introduced
in 1999. Since then hundreds of people have benefited from it. But of all
those who have had their sight restored throughout history, only about 20
recorded
cases were blind since childhood, and of those, most had less-than-perfect
corneas after surgery. When Goodman peered into May's eye after the surgery,
he saw a lens that ought to provide crystal-clear vision.

It doesn't- far from it. Pristine as his optical hardware is, May's brain
has never been programmed to process the visual information it receives. May
still
travels with his dog, Josh, or taps the sidewalk with a cane, and refers to
himself as "a blind man with vision." And that paradox fascinates Don
MacLeod
and Ione Fine, experimental psychologists at the University of California at
San Diego. The speed with which babies learn to understand the world
suggests
that they're born with the ability to process some aspects of vision. But
which aspects, exactly? What is learned and what is hardwired? During the
past
year and a half, Fine and MacLeod have put May through a battery of physical
and psychological tests, including functional magnetic resonance imaging,
or fMRI, which tracks blood flow in the brain. The results are opening the
first clear view into how we learn to see.

Functional magnetic resonance imaging, here being performed on graduate
student Melissa Sáenz, tracks blood flow in the brain. UCSD researchers used
this
same technique at Stanford University, in collaboration with the Salk
Institute, to chart Mike May's visual processing after his sight was
restored.
MacLeod's laboratory at the university is a labyrinth of filing cabinets,
optical equipment, and oddly placed desks. "It's well booby-trapped," he
says,
steering May toward the first of many tests one afternoon. "But May has an
uncanny ability to navigate complicated arrangements." Tall and athletic,
with
features that look boyishly handsome despite his graying black hair, May
would make a good James Bond if not for a few side effects of his blindness.
Unlike
the rest of his body, his eyelids haven't had a lifelong workout.
Perpetually half closed, they lend a stoic blankness to his face that's
relieved only
by the occasional smile. He has yet to learn facial expressions.

Sitting obligingly in front of an ancient computer monitor, May watches as
thick black-and-orange bars appear on the screen. MacLeod and Fine are
testing
his ability to see detail. His job is to adjust the contrast with a
trackball until he can just see the bars. A click on a mouse brings up
another set
of bars, thinner than the last, and he plays around with those until he can
see them too. Although his right eye ought to provide 20/20 vision, in
reality
it's closer to 20/500. Instead of discerning the letter E on an eye chart
from 25 feet, May can see it only from two. In the past the blurred vision
of
people with restored sight was blamed on scar tissue from surgery. But
stem-cell surgery leaves no scars. The signals are reaching May's brain, but
they
are not being interpreted very well.

More than 300 years ago, in a famous letter to the philosopher John Locke,
the Irish thinker William Molyneux anticipated what May sees. A blind man
who
is suddenly given vision, Molyneux suggested, wouldn't be able to tell the
difference between a cube and a sphere. Sight is one kind of perception and
touch another; they can be linked only through experience.

The most dramatic proof of this theory came in an experiment published in
1963 by Richard Held and Alan Hein, who were then professors at Brandeis
University
in Waltham, Massachusetts. Held and Hein raised two kittens in total
darkness. But every so often they would place the kittens in separate
baskets, suspend
the baskets from a single circular track, and turn on the lights. Both
baskets hung just above the floor, but one had holes for the kitten's legs
to poke
through; the other did not. The free-limbed cat ran in circles on the floor,
pulling the other basket along behind it; the other kitten had no choice but
to sit and watch. While the active kitten learned to see normally, the
passive kitten stayed effectively blind: Its eyes could see, but its brain
never
learned to interpret the sensory input.

Held and Hein's experiment has never been duplicated. But in the past half
century, studies of sight restoration, most notably by Oliver Sacks and
Richard
Gregory, have verified that some things can't be understood without
experience. Objects, faces, depth- just about everything that helps us
function in
the world- are meaningless when a person who has never seen before gets
sight. "Babies are born into a bright, buzzing confusion, but we can't ask
them
what it's like," Fine says. "In some ways talking to Mike May is like
getting to talk to a 7-month-old."

Ione Fine and Don MacLeod use this interferometer to shine a split laser
beam into May's eyes to test his ability to process visual information. They
also
run the same test on themselves. "I spend a lot of my time down here," Fine
says, "with an eye patch on and a bite bar in my mouth. It's disgusting . .
. really old plastic."
In the first months after his surgery, May fulfilled Molyneux's prediction:
He couldn't distinguish a sphere from a cube. Since then his sight has
improved,
but only slightly. He has a better grasp of spheres and squares ("We've
shown him an awful lot of them," Fine says), and with practice he can
understand
things he's seen again and again. But this is only a work-around: He's past
the critical period for learning to recognize objects instantly.

"Two of the major clues I have are color and context," May says. "When I see
an orange thing on a basketball court, I assume it's round. But I may not be
really seeing the roundness of it." Faces give him even more trouble.
Although he has seen faces everywhere since the first day his vision was
restored,
they simply don't coalesce into recognizable people. Their expressions-
their moods and personalities- elude him entirely. Even his wife is familiar
to
him only by the quality of her gait, the length of her hair, and the clothes
she wears. "If a face has no hair and a fake moustache, we can still tell
the gender," Fine says. "But he can't deal with it. The bit of the brain
that does that isn't working."

The best proof of this can be seen in the basement, where MacLeod's
interferometer sits. Designed to test the brain's ability to process visual
information,
the machine works by shining a split laser beam into a subject's eye. As the
beams travel, their light waves interfere with each other, bypassing the
optics
of the cornea and projecting a pattern onto the retina. Most subjects who
sit in front of the interferometer will see light and dark stripes,
regardless
of the quality of their optics. But when May opens his eyes to receive the
beams, he sees nothing at all.

The interferometer results are backed by fMRI scans, which track May's brain
activity as it's occurring. The scans show that when May sees faces and
objects,
the part of his brain that should be used to recognize them is inactive. But
there's a catch. When he sees an object in motion, the motion-detection part
of his brain lights up like a disco ball. He can interpret movement on a
computer screen as well as any normal-sighted adult and seems to have the
same
skill in real life. "We were driving along, and a minivan came up to us
pretty fast on his side," Fine remembers. "It whizzed by him, and he
mentioned
that it was going fast. That's a complicated calculation. The motion on the
retina depends on how big the car is, how close, and how fast it's going."

It's hard to escape the conclusion that motion detection, unlike every other
visual experience aside from color, is largely hardwired. The best
illustration
of this may be offered, once again, by cats. "If you roll a ball along a
floor, the cat will chase it as long as it's moving," Fine says. "As soon as
it's
stationary, the cat will have a hard time seeing it and will ignore it."
That's why mice freeze when they're afraid. It may also explain why May, who
can
barely recognize a stationary ball, is pretty good at catching a moving one.
It's his favorite use of his new sense. "I don't know who has more fun," he
says, "my 8-year-old or me."

When May walks down the street, he can't recognize perspective lines, so he
uses visual landmarks to keep his bearings. "I'm learning one frame at a
time,"
he says.
Blind people spend their entire lives understanding the world through their
hands. Their memories, their mental maps of the places they know, their
understanding
of Labradors, doorknobs, and the moguls on a ski slope are all tactile. The
sudden introduction of a new sense can't alter that fundamental way of
experiencing
the universe. Instead, any new information gleaned from light is simply
graphed onto the original, tactile map. "The old idea that there is one
picture
of the world on the surface of the cortex is way too simple," MacLeod says.
"In fact, we have a couple dozen complete maps." For someone just learning
how to merge all that information, this can make for a great deal of
confusion. But it might also offer a richer, truer sense of the world than
the one
perceived by those of us who have never been blind.

Sitting in the lab one day, MacLeod, smirking like a schoolboy who's
hatching a prank, slides a drawing across the table to May. On the paper are
four cubes.
The top right cube and the bottom left cube are dark; the other two are
light. The drawing is shaded as if light were coming from above, so the tops
of
the squares are lighter than their fronts. This makes the top of the dark
square the same shade as the front of the light square. Experience tells us
that
the top of the dark cube has been brightened by a hidden light, but it still
seems darker than the front of a light cube. It's an illusion based on
knowledge.
Naturally, May doesn't fall for it.

"He's actually closer to reality," Fine says. "We once showed him two
circles- a small one close to him and a larger one farther away. To you or
me they
would have appeared to be the same size. But when we asked, 'What's the
apparent size?' he couldn't understand. He kept saying, 'I know it's bigger
because
it's far away.'" Similarly, May's tactile experience with hallways and
highways tells him that their sides are parallel, so he simply can't
perceive converging
lines of perspective. "A hallway doesn't look like it closes in at all," he
says. "I see the lines on either side of the path, but I don't really think
of them as coming closer in the distance." He pauses to mull this over. "Or
maybe my mind doesn't believe what my mind is perceiving. When I see an
object,
it doesn't look different to me as I circle around it. I know orange cones
around vehicles are cones because of context, not because I'm seeing the
shape.
If I picture looking down on a cone, it still looks like a cone."

Learning to see, for May, is really about learning to fall for the same
illusions we all do, to call a certain mass of colors and lines his son, to
call
another group of them a ball.

One April morning, only weeks after his eye surgery, May took his skis and
his family up to the Kirkwood Mountain Resort in the Sierra Nevadas- a place
he knew like the texture on the back of his hand. This was where he had
first learned to ski and where he had later met his wife. The sun was out,
the
trees were green (greener than he'd imagined), and the slopes were
surrounded by gorgeous cliffs (were they miles away or just a few hundred
yards?). As
the lift churned above, skiers in puffy parkas flitted by, popping into his
field of vision. His wife, acting as a guide, had to remind him to stop
gawking
and ski.

With only one working eye, May already lacked depth perception. But he also
had little experience reading the shades and contours of a landscape.
Heading
down the mountain, he could hardly distinguish shadows from people, poles,
or rocks. At first, he tried to compute the lay of the land consciously: If
a certain slope was being lit from the side and a shadow fell in such a way,
then the slope must be convex. But once he hit his first bump, he was
tempted
to close his eyes and ski the way he knew and loved.

Only a handful of adults have ever seen the world through the eyes of a
newborn, and many who did came away wishing they were still blind. Their
family
and friends had convinced them that vision would offer a miraculous new
appreciation and understanding of the world. Instead, even the simplest
actions-
walking down stairs, crossing the street- became terrifyingly difficult.
Dispirited and depressed, about a third of them reverted back to the world
of
the blind, preferring dark rooms and walking with their eyes shut.

If May feels differently, it may be because his expectations were so low.
For a man who used to enjoy windsurfing blind and alone, able more often
than
not to return to the pier from which he'd started, sight is just another
adventure in a life of invigorating obstacles. Two years after his return to
Kirkwood
Mountain, May has learned to match what he sees on a ski slope with his
repeated physical experience of it. "He has jury-rigged himself quite a
functional
little system," Fine says. "He knows that this kind of shadow makes this
bump, this kind makes another." Instead of closing his eyes on even the
easiest
slopes, he can now negotiate moguls without a guide.

"People have this idea that it's so overwhelmingly practical to have sight,"
May says. "I say it's great from an entertainment point of view. I'm
constantly
looking for things that are unique to vision. Running and catching a ball is
one of them- I've been chasing balls my whole life. Seeing the difference
between the blue of my two sons' eyes is another. Or if you drop something,
you can find it."

The gift of sight may seem most miraculous, in the end, to those who have
never been blind. But May still finds things in the world to entrance him.
Sitting
in the passenger seat of Fine's car one day, with his dog, Josh, panting at
his feet, he ignores the blue Pacific to the left, the towering, top-heavy
eucalyptus trees lining the road like something out of Dr. Seuss. Instead,
he gazes at the beam of sunlight filtering through the window onto his lap.
"I can't believe the dust is just floating in the air like this," he says.
Oceans and trees, Seussean or otherwise, he has known all his life through
touch.
But this glitter of dust, suspended in the bright La Jolla sun, is an
entirely new awareness. He waves his hand through the sparkling beam. "It's
like
having little stars all around you."

Do You See What I See?

May ought to have 20/20 vision since his right eye was restored by stem-cell
surgery and a corneal transplant. Instead, his vision is closer to 20/500-
or about as blurry as the example to the right. "Basically, the results say
that you can only get precise vision early in life at the critical period,"
Don MacLeod says. "We don't really know where May will end up, but he isn't
approaching normal vision at a quick rate."

Right: A lifetime of blindness has left May insusceptible to visual
illusions. Most people would say that the top of the dark cube is darker
than the front
of the light cube. To May they're the same exact shade. It's only when
MacLeod explains the illusion that May can even see that squares are
supposed to
look three-dimensional.

RELATED WEB SITES:

Mike May kept a journal in which he recorded some of his thoughts and
experiences:
www.senderogroup.com/status.htm.

The Discovery Channel created a documentary about May, including his first
few moments of sight. Download a clip at Ione Fine's Web site:
www-psy.ucsd.edu/~ifine/bandages_market.avi.

© Copyright 2002 The Walt Disney Company. Back to


VICUG-L is the Visually Impaired Computer User Group List.
To join or leave the list, send a message to
[log in to unmask]  In the body of the message, simply type
"subscribe vicug-l" or "unsubscribe vicug-l" without the quotations.
 VICUG-L is archived on the World Wide Web at
http://maelstrom.stjohns.edu/archives/vicug-l.html


ATOM RSS1 RSS2